ТИТАН: значение слова

Начните вводить слово:
Нажмите сюда, чтобы развернуть список словарей

Энциклопедический Словарь Ф.А.Брокгауза и И.А.Ефрона

ТИТАН

(хим.; Titan нем., Titane франц., Titanium англ.; Ti = 48,1, если O = 16) ≈ четвертый элемент первого большого периода периодической системы, начинающегося с калия. Т. находится в четном ряду системы и принадлежит, следовательно, к металлической подгруппе и именно IV-oй группы. Занимает место между скандием (см.) и ванадием (см.); его высший окисел, TiО 2 , почти не имеет уже основных свойств [И для TiO 2 известны немногие, однако, солеобразные соединения с кислотами (см. ниже); в этом отношении он походит на ТеО 2 (см. Теллур). Растворы ТiO 2 в галоидоводородных кислотах содержат, вероятно, титаногалоидоводородные кислоты, например, H 2 TiF 6 .], характеризующих Sc 2 O З ; но и кислотные свойства его невелики ≈ слабее, чем у V 2 O 5 , вследствие невысокого типа окисла; к тому же, как известно, и угольный ангидрид, высшее кислородное соединение типического элемента IV-ой группы, не принадлежит к числу ангидридов, дающих сильную кислоту. Т. в большой мере напоминает по своим отношениям кремний, от которого существенно отличается неспособностью образовать летучее соединение с водородом, как и подобает металлу, а также тем, что дает окислы низших типов и именно основного характера, какова полуторная окись Тi 2 О 3 . ≈ Т. никогда не встречается в природе свободным; соединения его нередки, но находятся всегда в малых количествах; к числу важнейших относятся: рутил , анатаз и брукит ≈ кристаллические разности ангидрида TiO 2 ; титанит , или сфен ≈ кремнетитановокислый кальций CaTiSiO 5 ; титанистый железняк , или ильменит (Ю. Урал, Ильменские горы) FeTiO 3 ; перовскит , результат изоморфного замещения железа кальцием (Fе,Са)ТiO 3 . Так же магний замещает иной раз железо. Известно много, вообще, минералов, содержащих одновременно Т. и железо. Существуют изоморфные смешения FeTiO 3 с железным блеском Fe 2 O 3 , что позволяет принимать FeTiO 3 за окись железа, в которой один атом Fе III замещен через Ti III . С другой стороны, магнитный железняк нередко содержит некоторую примесь Т., вследствие чего он присутствует иногда и в чугуне, и в доменных шлаках. Во многих глинах, почвах, минеральных водах открыты следы Т.; он найден в метеорных камнях и присутствует в атмосфере солнца. Т. принадлежит к числу трудновоcстановляемых элементов; получение в свободном виде, кроме того, очень затрудняется способностью его соединяться при высокой температуре с азотом воздуха. Только в недавнее время Муассану удалось получить (1895) почти чистый металлический Т ., содержащий около 2% углерода. Такой Т. представляет сплавленную массу с блестящим белым изломом. Он весьма трудноплавок и тверд, легко чертит горный хрусталь и сталь, но хрупок ≈ легко измельчается в стальной и в агатовой ступке. Удельный вес 4,87. Теплоемкость 0,1125 при 0╟≈1000╟ и 0,1288 при 0╟≈211╟ (Нильсон и Петтерсен) ≈ для иным путем полученного Т., менее чистого. В атмосфере хлора загорается при 350╟, превращаясь в TiCl 4 ; при несколько высшей температуре соединяется с бромом TiBr 4 ; TiJ 4 образуется при еще более сильном нагревании и без воспламенения. В кислороде Т. загорается при 610╟, при чем получается аморфный TiO 2 . При 800╟ порошкообразный Т. в токе азота соединяется с ним; взаимодействие идет с выделением тепла: Т. "горит в азоте", превращаясь в нитрид Ti 2 N 2 . При очень высокой температуре, достигаемой в электрической печи, это соединение, однако, не образуется; температура здесь оказывается выше температуры диссоциации нитрида (Муассан). При сплавлении с углем Т. дает карбид TiC; лишний уголь выкристаллизовывается в виде графита. С кремнием и бором получаются очень твердые, как алмаз, соединения. Существуют сплавы с хромом, железом, медью, оловом и свинцом. Т. растворяется в разведенной серной кислоте даже на холоду, но медленно; нагревание ускоряет реакцию ≈ выделяется водород и получается фиолетовый раствор; то же имеет место и при взаимодействии с кипящей крепкой соляной кислотой; в обоих случаях возникают солеобразные соединения трехвалентного Т. (см. ниже). При кипячении с крепкой серной кислотой выделяется сернистый газ. Взаимодействие с горячей азотной кислотой идет довольно медленно, с царской водкой ≈ быстрее, но затем замедляется выделением ТiO 2 . Расплавленные поташ или сода действуют весьма энергично на порошок Т., как и смесь селитры и поташа и особенно расплавленная бертолетова соль. Разложение порошкообразным Т. водяного пара начинается при 700╟ и идет правильно при 800╟, когда образуется ТiO 2 и водород. Для получения Т. Муассан пользовался или отобранными кристаллами рутила (из Лиможа), или чистым TiO 2 лабораторного приготовления. Смесь порошков чистого угля и, в некотором избытке, TiO 2 после тщательного перемешивания прессовалась, высушивалась и в цилиндрическом угольном тигле в 8 стм в диаметре помещалась в электрическую печь, где подвергалась в течение 10≈12 минут действию вольтовой дуги сверху, как всегда, от тока в 1000 ампер и 60 вольт. Для каждой операции употреблялось 300≈400 г смеси. По охлаждении содержимое тигля оказывалось сплавленным только на глубину в несколько сантиметров; при употреблении тока в 2200 ампер и 60 вольт выход Т. был больше, но и тогда реакционная смесь оказывалась не проплавленной до самого дна тигля. Т. получался обыкновенно в количестве около 200 г; под слоем его всегда оказывался слой Ti 2 N 2 ≈ где температура была ниже, а у дна находился слой окиси Т., ТiO. Таким образом полученный Т. всегда содержит углерод, не менее 8%. Измельчение такого Т., смешение с новым количеством TiO 2 и новое сплавление при тех же условиях приводит, наконец, к вышеописанному Т. с 2% углерода [Берцелиус получил Т., сплавляя титанофтористый калий, K 2 TiF 6 , с металлическим калием под слоем поваренной соли; препарат содержал азот. В виде препарата, похожего на порошок железа, Т. был получен Велером и Девиллем при действии паров натрия в атмосфере водорода на K 2 TiF 6 и в форме пористой массы ≈ при нагревании тех же исходных материалов в закрытом фарфоровом тигле; такой Т. разлагает воду уже при Ι00╟. Т., разлагающий воду при 500╟, получен Керном (1876) при действии паров TiCl 4 в атмосфере водорода на металлический натрий.]. Титановый ангидрид TiO 2 в более или менее чистом виде встречается в природе, как уже упомянуто, в трех кристаллических видоизменениях. Бурый или красноватый рутил (см.) представляет квадратные призмы; он изоморфен с оловянным камнем SnO 2 и имеет удельный вес 4,18≈4,25. Анатаз, бурого или черного цвета, окристаллизован в иные формы квадратной системы; уд. вес 3,82≈3,95. Брукит ≈ плоские ромбические призмы, имеет уд. вес 3,86≈4,23. Аморфный ангидрид, белый безвкусный порошок, приобретающий при нагревании лимонно-желтую и при накаливании бурую окраску, удельного веса 3,89≈3,95, может быть получен из водного раствора хлористого Т. TiCl 4 в виде гидрата при осаждении аммиаком; осадок промывают, сушат и прокаливают; сильное нагревание повышает удельный вес до 4,25. В пламени гремучего газа аморфный ТiO 2 плавится и при охлаждении превращается в кристаллическую массу. Подобно кремнезему, аморфный TiO 2 , тем более окристаллизованный, нерастворим в воде, а также в соляной и разведенной серной кислотах; но в отличие от кремнезема при продолжительном нагревании растворяется в крепкой серной кислоте ≈ из такого раствора получается после выпаривания белая масса основной соли (OTi)SO 4 [Известна и средняя сернокислая соль, Ti(SO 4 ) 2 ╥3H 2 O, содержащая четырехвалентный Т. в качестве металла. Она получается при окислении раствора Ti 2 (SO 4 ) 3 (см. далее) азотной кислотой и выделяется при выпаривании в виде прозрачной, желтоватой, аморфной массы. С вычисленным количеством сернокислого калия получается двойная соль, которая кристаллизуется из раствора надсерной кислотой с тем же количеством кристаллизационной воды K 2 Тi(SО 4 ) 3 ╥3Н 2 O.]. TiO 2 соединяется также при сплавлении с KHSO 4 ; получается прозрачная масса, вполне растворимая в теплой воде; но при кипячении такого раствора ТiO 2 осаждается в виде гидрата. Сплавление TiO 2 с едкими щелочами или с углекислыми щелочными металлами приводит к образованию титанатов. Из гидратов TiO 2 известны ортотитановая кислота (НО) 4 Ti и метатитановая (HO) 2 TiO. Кроме того, существуют гидраты с промежуточным содержанием воды, а также и с меньшим, чем в метакислоте; такие гидраты представляют полититановые кислоты и, подобно поликремневым, не могут быть точно охарактеризованы вследствие взаимного сходства. Если к раствору титаната щелочного металла в холодной соляной кислоте прибавлять щелочь, то осаждается ортокислота в виде объемистого белого осадка, который растворим в разведенных соляной и серной кислотах и при высушивании постепенно теряет воду, превращаясь в другие гидраты. При нагревании ортокислота превращается в ангидрид с выделением света; сохраняемая под водой постепенно превращается в метакислоту. Метакислота получается также при кипячении солянокислого раствора ортокислоты или при действии азотной кислоты уд. веса 1,25 на Т.; превращение в ангидрид при нагревании для нее совершается без выделения света. Метакислота нерастворима в кислотах, за исключением крепкой серной. Прочие гидраты точно так же называют орто- или метакислотами в зависимости от отношения их к обычным кислотам, растворяются они в них или не растворяются. При диализе солянокислого раствора титановой кислоты получается водный раствор ее (Граам) ≈ гидрозоль, следовательно, в виде бесцветного гидрогеля титановая кислота приготовлена точно так же (фон-дер-Фордтеном, 1887). Титанат калия Κ 2 Ti Ο 3 получается в виде волокнистой желтоватой массы при сплавлении TiO 2 с поташом. При кипячении титановой кислоты в растворе едкого кали образуется та же соль; она может быть при испарении раствора выкристаллизована в виде бесцветных, легкорастворимых призм, содержащих кристаллизационную воду ≈ K 2 ТiO 3 ╥4Н 2 O. Известны в кристаллическом или в аморфном виде такие еще соли: K 2 Тi 3 O 7 ╥2Н 2 O, K 2 Тi 3 O 7 ╥3Н 2 O, K 2 Ti 6 O 13 ╥2H 2 O. Если к раствору TiCl 4 в слабом спирте прибавить при охлаждении избыток перекиси водорода, а затем нейтрализовать соляную кислоту аммиаком, то выделяется надтитановая кислота в виде желтого осадка [Бесцветный раствор TiO 2 в крепкой серной кислоте окрашивается от перекиси водорода в оранжево-красный цвет или в лимонно-желтый ≈ в случае только следов Н 2 O 2 . Это ≈ чувствительная реакция на H 2 O 2 , отличающая, между прочим, ее от надсерной кислоты, которая не действует в этих же условиях на TiO 2 .]. Ангидрид этой кислоты имеет такой состав ≈ TiO 3 и представляет вещество перекисного характера, как, напр., и надсерный ангидрид (см. Сера). Известны солеобразные соединения TiO 3 с перекисями щелочных металлов и аммония, как недавно показали П. Меликов и Л. Писаржевский (1898), которые допускают существование и еще более богатого кислородом соединения Т. в виде сочетания с Na 2 O 2 , именно Τ i 2 Ο 7 . Прежде чем говорить о низших кислородных соединениях Т. и их производных, следует обратиться к галоидным соединениям. Четыреххлористый Т. TiCl 4 ≈ подвижная неокрашенная жидкость, уд. веса 1,7604 при 0╟; замерзает при ≈25╟; кипит при 136,4╟; имеет нормальную плотность пара. Обычный способ получения состоит в действии хлора на нагретую смесь ТiО 2 и угля. ТiCl 4 обладает едким кислым запахом и выделяет густые белые пары на воздухе; избытком воды разлагается на соляную кислоту и титановую, которая остается в растворе; осторожное прибавление воды приводит шаг за шагом к образованию HO≈TiCl 3 , (HO) 2 ≈TiCl 2 , (HO) 3 ≈TiCl и (HO) 4 Ti. Подобно четыреххлористому олову, на которое ТiCl 4 очень походит, известны многие кристаллические сочетания с другими хлористыми соединениями и для ТiCl 4 . Газообразный аммиак быстро поглощается четыреххлористым Т.; образуется гигроскопический порошок, TiCl 4 ╥4NH 3 , который при нагревании дает желтый возгон TiCl 4 ╥3NH 4 Cl. Когда действуют газообразным бромистым или йодистым водородом на ТiCl 4 , то получается TiBr 4 ≈ темп. плавл. 39╟, темп. кип. 230╟, уд. вес 2,6, желтая кристаллическая масса ≈ и TiJ 4 , который представляет ломкую, красновато-бурую массу, плавящуюся при 150╟ и кипящую при 360╟ без разложения (плотность пара нормальная). TiJ 4 , подобно TiCl 4 , дымит на воздухе и легко растворим в воде. При нагревании смеси ТiО 2 в плавикового шпата с дымящей серной кислотой в платиновой реторте отгоняется TiF 4 , бесцветная дымящая жидкость. Из раствора ТiO 2 в плавиковой кислоте могут быть получены соли титанофтористоводородной кислоты , изоморфные с соответствующими соединениями кремния, циркония и олова. При пропускании паров ТiCl 4 в смеси с водородом через докрасна накаленную трубку получается треххлористый T . ТiCl 3 в виде темно-фиолетовых чешуек. TiCl 3 нелетуч, расплывается на влажном воздухе, будучи легкорастворим; растворы имеют красновато-фиолетовый цвет и образуются без выделения тепла. ТiCl 3 сильный восстановитель, он осаждает из соляных растворов металлические ≈ золото, серебро, ртуть, и из сернистой кислоты при кипячении ≈ серу. При нагревании ТiСl 3 получается ТiСl 4 и двухлористый Т . TiCl 2 ; это гигроскопический светло-бурый порошок, который при подогревании на воздухе загорается, как трут, и превращается в TiCl 4 и ТiO 2 , а брошенный в воду, шипит и при выделении водорода дает желтый раствор. Металлическая натура Т. в соединениях типа ТiХ 3 , очевидная из свойств TiCl 3 , станет еще очевиднее, если указать на существование такой соли Ti(SO 4 ) 3 ╥8H 2 O; это сернокислый Т . из ряда полуторной окиси. Раствор соли фиолетового цвета получается при действии разведенной серной кислоты на Т., при чем выделяется водород, как упомянуто выше; при сгущении раствор принимает красивый синий отблеск и выделяет скопления листочковидных кристаллов указанного состава (Glatzel). С сернокислым цезием, также рубидием эта соль дает квасцы СsТi(SО 4 ) 2 ╥12Н 2 O, кристаллизующиеся в кубах, фиолетово-красного цвета. Квасцы образуются, следовательно, целым рядом элементов из первого большого периода, а именно они существуют для Ti, V, Сr, Mn, Fе и Со (Piccini). Полуторная окись Т . Ti 2 O 3 получается при накаливании ТiO 2 в струе водорода в виде черного порошка; азотная и соляная кислоты на нее не действуют, а серная растворяет, при чем получается фиолетовый раствор. В виде темно-бурого гидрата полуторная окись осаждается щелочью из раствора TiCl 3 . Окись T . ТiO получается, как упомянуто, при восстановлении ТiO 2 углем в вольтовой дуге и именно в виде черных призматических кристаллов; она возникает также, в числе других продуктов, при накаливании ТiO 2 с металлическим магнием (Cl. Winkler, 1890) и пока очень мало изучена; вероятно, она относится, как и окись теллура ТеО, к числу недокисей. С серой для титана известны три соединения: TiS 2 ≈ крупные листочки цвета сусального золота, Ti 2 S 3 ≈ зеленовато-черный порошок и TiS ≈ блестящее, похожее на висмут вещество. TiS 2 возникает при пропускании сероводорода, насыщенного парами TiCl 4 , через накаленную трубку; Ti 2 S 3 образуется при накаливании TiS 2 в токе индифферентного газа; TiS получается из TiS 2 или Ti 2 S 3 при накаливании в струе водорода. Кроме упомянутого нитрида TiN или, быть может, Ti 2 N 2 , который обладает цветом бронзы, очень тверд (дает черту на рубине и даже алмазе) и получается прямо из элементов, известны еще два соединения с азотом: нормальный нитрид Ti 3 N 4 и динитрид Τ i Ν 2 . Первый, обладающий цветом меди, получается при нагревании TiCl 4 ╥4NH 3 в токе аммиачного газа и первоначально был принят (Розе и Либихом) за свободный Т., что было опровергнуто Вёлером (1850 г.), изучившим состав соединения. Динитрид образуется при сильном накаливании ТiO 2 в атмосфере аммиака и представляет темно-синий порошок, похожий на возгнанное индиго ≈ с медно-красным отблеском. Свободный Т. в прежнее время хотели видеть (Волластон, 1822 г.) также в тех кубических кристаллах медно-красного цвета и с металлическим блеском, которые присутствуют в доменных шлаках, если железная руда содержит Т.; но Вёлер (1849 г.) показал, что это цианисто-азотистый Т. Тi(СN) 2 +3Тi 3 N 2 , как анализом, так и синтезом ≈ при сильном нагревании (при температуре плавления никеля) в хорошо закрытом тигле смеси желтой соли с ТiO 2 . Другой способ получения этого соединения ≈ накаливание добела ТiO 2 с углем в токе сухого азота (Девилль и Вёлер). Из кислот на цианисто-азотистый Т. действует только царская водка. Сплавление с едким кали приводит к образованию титанатов при выделении аммиака, а накаливание в струе водяного пара ≈ к образованию цианистого водорода, ТiO 2 , аммиака и водорода. Впервые Т. был замечен (W. Gregor) в 1789 г. в ильмените из Корнваллиса; в 1795 г. Клапрот изучил состав рутила и дал имя новому элементу. С. С. Колотов.